
Auto-tuning of the FFTW Library for Massively Parallel
Supercomputers

Massimiliano Guarrasia, Giovanni Erbaccia and Andrew Emersona

aCINECA, Italy

Abstract

In this paper we present the work carried out by CINECA in the framework of the PRACE-2IP project which had the aim of
improving the performance of the FFTW library by refining the auto-tuning mechanism that is already implemented in this
library. This optimization was realized with the following activities:

Identification of the major bottlenecks present in the current FFTW implementation;
Investigation of the auto-tuning mechanism provided in FFTW in order to understand how performance is affected by domain

decomposition;
Introduction of a new parallel domain decomposition;
Construction of a library to improve the performance of the auto-tuning mechanism.
In particular, we have compared the performance of the standard Slab Decomposition algorithm already present with that

obtained using the 2D Domain Decomposition and we found that on massively parallel supercomputers the performance of this
new algorithm is significantly higher.

1.Introduction

Currently many challenging scientific problems require the use of Discrete Fourier Transform algorithms (DFT, e.g.:(1)) with
one of the most popular libraries used by the scientific community being the FFTW library ((2),(3)).

This library, which is free software, is a C subroutine library for computing DFTs in one or more dimensions with arbitrary
input size consisting of both real and complex data. FFTW can also compute discrete Hartley transforms (DHT) of real data and
can have arbitrary length. FFTW employs O(n·log(n)) algorithms for all lengths, supports arbitrary multi-dimensional data and
includes parallel (multi-threaded) transforms for shared-memory systems and distributed-memory parallel transforms using MPI
libraries. FFTW does not use a fixed algorithm for computing the transform, but instead it adapts the DFT algorithm to the
underlying hardware in order to maximize performance. Hence, the computation of the transform is split into two phases. First,
FFTW's planner “learns” the fastest way to compute the transform on the selected machine. The planner produces a data
structure called a plan that contains this information. Subsequently, the plan is executed to transform the array of input data as
dictated by the plan. The plan can be reused as many times as needed. In typical high-performance applications, many transforms
of the same size are computed and, consequently, a relatively expensive initialization of this sort is acceptable. On the other
hand, if you need a single transform of a given size, the one-time cost of the planner becomes significant. For this case, FFTW
provides fast planners based on heuristics or on previously computed plans. During plan creation, users can choose the method
that he/she prefers using the FFT_MEASURE (obtaining a more accurate plan) flags or FFTW_ESTIMATE flags (obtaining the
plan faster).

Currently, particularly using small size data arrays, the FFTW libraries have been shown to not scale well beyond a few
hundred cores. Considering that current PRACE Tier-0 systems consist of several hundreds of thousands of cores, and that in
order to obtain an access on these systems a good scalability of a few thousand of cores at least is required, there is a clear need
to improve FFTW implementations on massively parallel supercomputers.

For this purpose, a large amount of time must be first dedicated to performing extensive benchmarks in order to find the major

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Autotuning of FFTW Library for Massively Parallel Supercomputers

bottlenecks of the auto-tuning mechanism. Thus, a significant part of the next two sections will be devoted to the description of
these benchmarks that were performed using two parallel supercomputers present in the CINECA infrastructure:

• The PLX cluster (4) chosen in order to test the performance on a typical Tier-1 system. The PLX system is an IBM
iDataPlex DX60M3 Linux Infiniband cluster. It consists of 274 IBM X360M2 12-way compute nodes Each one
contains 2 Intel(R) Xeon(R) Westmere six-core E5645 processors (5), with a clock of 2.40GHz. All these compute
nodes have 47GB of memory.

• The FERMI cluster (6), chosen in order to test the performance on a typical Tier-0 system. FERMI is a Blue Gene/Q
system (7)and has a massively parallel architecture. Each Compute Card (which we call a "compute node") features an
IBM PowerA2 chip with 16 cores working at a frequency of 1.6 GHz, with 16 GB of RAM and network connections. A
total of 32 compute nodes are plugged into a so-called Node Card. Then 16 Node Cards are assembled in one midplane
which is combined with another midplane and two I/O drawers to give a rack with a total of 32x32x16 = 16K cores.. In
our BG/Q configuration there are 10 racks for a total of 160 K cores.

Our optimization activities were mainly aimed at improving three aspects of the FFTW library that seemed to us to be the most
promising: the optimization of the number of cores used during a DFT execution (this is particularly important for low-
dimensional arrays, e.g. 2D arrays), the implementation of a new domain decomposition algorithm and a new auto-tuning
algorithm used to switch from the standard parallel domain decomposition algorithm to the new one (we focus our attention on
3D DFT in particular).

Before starting to describe in detail our development activities, it will be useful to describe the FFTW mechanisms used to
make the parallel domain decomposition. With a serial or multithreaded FFT, all of the inputs and outputs are stored as a single
contiguous chunk of memory. With a distributed-memory FFT, the inputs and outputs are broken into disjoint blocks, one per
process.

In particular, FFTW uses a 1D block distribution of the data, distributed along the first dimension. For example, if you want to
perform a 100 × 200 complex DFT, distributed over 4 processes, each process will get a 25 × 200 slice of the data. This method
is also known as the Slab Decomposition algorithm. Clearly, it cannot be used on 1D arrays so for these another method is used,
but the intrinsic structure of FFT algorithm in any case does not lead to a good parallelization of the 1D transforms. Thus we
excluded the 1D DFT in our optimization work.

Furthermore, it is quite easy to see that the size of the index involved in the parallel domain decomposition may provide us
with a limit of the maximum number of usable cores. In addition, if the size of this index isn’t a multiple of the number of used
cores, it could cause a large load unbalance, which would also affect the performance.

Section 2 will be mainly devoted to investigate these features, especially in the 2D cases, where we might expect that these
issues are more important. For many-dimensional arrays (3D, 4D, and so on), the issues related to the size of the index involved
in the parallel domain decomposition are even more evident, but in these cases other parallel domain decomposition algorithms
could be used. For simplicity, our work focused on the implementation of one of the algorithms, namely the case of 3D DFTs
(that are also the most currently used).

Using this Slab Decomposition, the parallel computation of the 3D DFT can be divided into four steps:
• 1D Parallel Domain Decomposition

• 2D FFT along the two local dimensions;

• Global transposition;

• 1D FFT along the third dimension.

This decomposition is faster on a limited number of cores because it only
needs one global transpose, minimizing communication. The main
disadvantage of this approach is that the maximum parallelization is limited
by the length of the largest axis of the 3D data array used. The performance
can be further increased using a hybrid method, combining this
decomposition with a thread-based parallelization of the individual FFTs,
but the performance increases only slightly. In any case, for a cubic array
with N3 data points, the maximum number of usable cores scales only as N.

In order to improve the performance on massively parallel
supercomputers significantly, an innovative approach is necessary. Thus, in order to reduce the scaling limitation we use a 2D
Domain Decomposition ((8), henceforth referred as 2D3). In this case, the computation will be done in six steps:

2

Figure 1: Slab decomposition of a 3D DFT. From (8).

Autotuning of FFTW Library for Massively Parallel Supercomputers

• 2D Parallel Domain Decomposition

• 1D FFT along the first local dimension;

• Global transposition;

• 1D FFT along the second dimension;

• Global transposition;

• 1D FFT along the third dimension.

Using this method, another global communication is
required. Nevertheless, these global transposition
steps require communication only between subgroups
of all nodes. In other words, in the DFT computation,
this algorithm pays a higher cost in terms of MPI
communications, but it ensures higher scalability.
Indeed, for a cubic data array with N3 data points, this
means that the maximum number of cores scale as N2, significantly improving the number of usable cores. Therefore, we can
expect that the performance of the 2D3 algorithm (if compared with the performance of standard FFTW) will be higher using a
larger number of cores, and lower using fewer cores. We also expect that this gap will be even higher on a cluster whose
communication network is particularly powerful, (e.g. Blue Gene/Q network). In order to implement this new 2D3 algorithm on
FFTW we use the one provided in the 2Decomp&FFT library (9).
In Section 3 we will show the performances of this new algorithm compared to the one used by the standard FFTW and describe
the improved auto-tuning mechanism used to switch from the standard to the new algorithm.

2. Performance of the 2D FFTW auto- tuning algorithm

This section will be devoted to improving the FFTW auto-tuning mechanism by investigating the major bottlenecks in the 2D
DFT execution using FFTW on a moderate number of cores. For this reason the tests reported in this section were performed on
the PLX cluster. In the first part of the section we will show the bottleneck of 2D DFT execution, reporting a series of targeted
tests, whereas in the last part we will show how we improved the efficiency of the standard FFTW algorithm.
For our benchmark activity we selected five 2D arrays, with sizes : 256x256, 1024x1024, 8192x9192, 1024x16384 and
16384x1024. These arrays are sufficiently large to show us the limits of the parallel implementation of the FFTW library, and
they are reasonably representative of a large class of 2D problems solved using FFTW libraries on modern medium-size parallel
supercomputers.

Figure 3: Plot of the execution times reported in Table 1, using MPI communications (both FFTW_MEASURE and FFTW_ESTIMATE cases), and hybrid
MPI+OpenMP communications (only FFTW_MEASURE case).

3

Figure 2: 2D Decomposition of a 3D DFT. The array was divided between 16 MPI process.
From (8).

Autotuning of FFTW Library for Massively Parallel Supercomputers

MPI
Number
of cores

ESTIMATE MEASURE

256 x
256

1024 x
1024

8192 x
8192

1024 x
16384

16384 x
1024

256 x 256 1024 x
1024

8192 x
8192

1024 x
16384

16384 x
1024

1 1.7 26.7 2685.9 812.0 602.9 1.7 26.7 2685.9 812.0 602.9

2 1.1 39.1 3497.4 608.4 522.8 1.1 39.1 3497.4 608.4 522.8

4 0.6 29.6 2054.3 542.5 326.9 0.6 29.6 2054.3 542.5 326.9

6 0.7 17.0 2040.0 652.2 651.6 0.7 17.0 2040.0 652.2 651.6

8 0.4 8.5 1074.4 286.1 230.8 0.4 8.5 1074.4 286.1 230.8

12 0.5 14.1 2007.0 546.5 542.8 0.5 14.1 2007.0 546.5 542.8

16 0.4 6.9 664.4 156.5 129.7 0.4 6.9 664.4 156.5 129.7

24 1.3 11.8 1046.3 246.6 247.5 1.3 11.8 1046.3 246.6 247.5

32 0.4 5.0 362.1 99.2 85.2 0.4 5.0 362.1 99.2 85.2

36 3.4 21.0 730.9 198.9 201.5 3.4 21.0 730.9 198.9 201.5

48 6.8 10.1 583.6 155.8 156.2 6.8 10.1 583.6 155.8 156.2

64 5.6 3.6 202.3 60.7 54.4 5.6 3.6 202.3 60.7 54.4

128 0.3 2.4 127.3 32.4 30.2 0.3 2.4 127.3 32.4 30.2

256 0.2 1.6 69.7 19.3 18.6 0.2 1.6 69.7 19.3 18.6

MPI
+

Open
MP

Number
of cores

ESTIMATE MEASURE

256 x
256

1024 x
1024

8192 x
8192

1024 x
16384

16384 x
1024

256 x 256 1024 x
1024

8192 x
8192

1024 x
16384

16384 x
1024

1 1.3 27.6 2765.9 832.9 624.7 1.3 28.3 2756.6 832.8 625.7

2 0.7 14.6 1685.5 443.6 311.4 0.7 14.7 1697.1 472.7 314.1

4 0.4 8.8 970.7 276.5 172.8 0.4 9.4 1175.8 272.7 184.3

6 0.4 5.8 889.0 266.4 151.3 0.4 6.0 881.3 267.1 149.8

8 0.2 4.3 639.5 198.8 102.1 0.2 4.4 640.0 199.1 99.5

12 0.2 5.2 874.6 189.8 79.3 0.2 5.3 876.1 189.8 79.9

16 0.8 14.5 1107.5 294.6 249.3 0.7 14.3 1112.6 294.1 248.9

24 0.8 14.5 1097.2 303.0 237.1 0.8 14.4 1102.6 303.5 237.6

32 0.7 7.7 635.0 167.4 148.2 0.7 7.7 676.4 168.3 149.1

36 1.7 43.1 2838.0 789.2 786.9 1.7 43.3 2601.5 867.0 790.7

48 0.7 7.4 684.0 191.1 151.9 0.7 7.4 685.7 191.1 152.4

64 0.6 5.6 395.2 102.8 89.4 0.6 5.6 423.7 105.5 90.6

128 0.5 3.9 218.4 58.7 63.0 0.5 3.9 242.0 59.2 63.6

256 0.4 3.1 95.8 28.1 21.5 0.4 3.1 115.9 28.2 21.6

Table 1: Execution times (ms) of five 2D complex-to-complex DFT, performed using FFTW 3.2 on PLX using from 1 to 256 cores. We used both Pure MPI, and
Hybrid MPI + Open MP parallel communication methods, generating plans using both the FFTW_ESTIMATE and FFTW_MEASURE flags.

Using these data arrays we performed a scalability test from1 to 256 cores of the PLX cluster, comparing the execution times of
the complex-to-complex DFT obtained using both pure MPI then the hybrid MPI+OpenMP implementation of FFTW v3.2. We
repeated the same tests also generating the corresponding plans using both the FFTW_ESTIMATE and FFTW_MEASURE flags.
These execution times were averaged over 512 runs and reported in Table 1. They are also plotted in Figure 3, where we compare
only the execution times obtained using:

• FFTW routines for MPI communications and the FFTW_ESTIMATE flag (dotted lines);
• FFTW routines for MPI communications and the FFTW_MEASURE flag (dashed lines);
• FFTW routines for hybrid MPI + Open MP communications and the FFTW_MEASURE flag (continuous line).

It can be seen from the figure that the execution times obtained using FFTW_MEASURE are essentially identical to the results
obtained using FFTW_ESTIMATE (in fact they differ by only about 1-3%). This evidence allows us to consider only the results
from one of the two methods (we chose the FFTW_MEASURE flag) as representative of the performance of the FFTW library.
This is also the reason why we omitted the results of scalability tests obtained using the hybrid implementation and the
FFTW_ESTIMATE flag.

In Figure 4 we compare the efficiency obtained in the scalability tests shown in Figure 3. We plot only the scalability test
obtained using only the FFTW_MEASURE flag and pure MPI communications (dashed lines) or using MPI + Open MP
communications (continuous lines). This allows us to confirm what has already been obtained from Figure 3, i.e.:

4

Autotuning of FFTW Library for Massively Parallel Supercomputers

• Using a large number of cores, the use of pure MPI communication give us a better efficiency if compared with the
results obtained from the hybrid implementation. Since we are interested in the performance of the FFTW library on a
large number of cores (from hundreds to thousands), we will focus our attention only on the pure MPI implementation
of the library.

• When the number of cores is small (≤12 cores on PLX, i.e. 1 node card) the performance of the hybrid implementation
(MPI + Open MP) is greater than the pure MPI one. This difference is probably due to the higher efficiency of the Open
MP communications on a single shared memory node card.

• For moderately large number of cores (e.g. ~100) the efficiency of the execution of the DFT computation becomes
small. This is particularly evident when the size of the last index (the one involved in parallel domain decomposition in
our case) is comparable whit the number of cores used. On the other hand, if we use the hybrid approach the
performance increases beyond this limitation, depending on the size of the second index of the data array. Moreover,
generally speaking, when the number of cores is comparable with the size of the last index, the efficiency of FFTW
becomes very low.

• If more than one node card was used, the efficiency of the codes increased with the size of the array.

Figure 4: Efficiency obtained during the scalability test of Figure 3

Furthermore, using this figure we can also clearly see another direct consequence of the slab decomposition algorithm:
considering that, in our case, for the FFTW library, the index involved in the parallel domain decomposition is the last 1, we see
that the greater the ratio between the size of the last index of our array and the number of used cores, the greater will be the
efficiency of FFTW. This is more evident comparing the efficiency on 256 cores for sky-blue, orange, and red lines
(corresponding to arrays of 16384x1024, 1024x16384, and 8192x8192 points respectively). As expected, we obtain the best
performance for the orange line (last index = 16384), followed by the red line (last index = 8192), and then the sky-blue line (last
index = 1024). Thus, in order to improve the performance, it would be better rearrange the array to have the maximum size on
the last index.

Moreover, from the same figure we also notice that, although generally the execution time decreases with the number of cores,
when the size of the first index isn't a multiple of the numbers of cores, the execution time increases again (due to load
unbalancing, as expected).

Finally, in Table 2, we have also analyzed the time needed to create the plans used for the execution of the DFT reported in
Table 1. It can be seen from Table 1 and Table 2 that since the time needed to create a plan with FFTW_MEASURE may be
hundreds of times that needed for the execution of the plan itself, it makes sense to use this flag in preference to
FFTW_ESTIMATE only when the execution of the plan must be repeated very frequently, for example, many thousands of
times.

1 Please note that it is true only for FORTRAN users. The index involved in the parallel domain decomposition for C or C++ users is the first.

5

Autotuning of FFTW Library for Massively Parallel Supercomputers

MPI
Number
of cores

ESTIMATE MEASURE

256 x
256

1024 x
1024

8192 x
8192

1024 x1
6384

16384 x
1024

256 x 256 1024 x
1024

8192 x
8192

1024 x1
6384

16384 x
1024

1 1.3 1.1 1.3 1.1 1.3 137.3 1076.5 23813.3 8738.2 11841.8

2 2.9 2.4 2.8 2.6 5.1 145.9 1846.3 44204.6 15210.0 22637.4

4 3.2 2.6 3.1 3.2 4.1 92.3 1014.3 28683.4 15199.2 15892.3

6 1.8 2.3 15.1 4.3 5.0 23.3 199.8 8627.8 2870.5 2928.3

8 5.2 2.9 2.9 2.7 4.1 92.8 608.7 21744.5 12617.5 13340.7

12 2.2 2.9 68.1 7.9 8.7 26.4 235.4 4837.7 2721.2 2644.6

16 9.3 4.0 4.8 6.6 6.5 103.1 585.2 18686.2 9674.2 7932.9

24 2.9 3.6 19.4 6.4 4.7 20.8 759.7 2432.0 2124.6 2111.2

32 15.2 7.8 12.4 7.6 4.4 163.0 1128.8 11889.0 8123.7 3495.5

36 3.3 4.1 6.2 17.9 6.4 20.6 202.5 1755.1 1592.0 1602.4

48 4154.
0

4.6 24.1 14.1 14.7 20.2 358.4 1419.6 1655.2 1642.8

64 512.0 18.4 8.9 6.4 5.7 11200.0 1868.8 9247.2 5566.4 2599.2

128 34.0 3406.1 8.2 15.1 17.5 706.7 4297.1 4316.8 5284.6 3816.8

256 23.1 57.3 18.1 41.5 41.1 616.7 13406.3 6032.2 6377.4 5282.7

MPI
+

Open
MP

Number
of cores

ESTIMATE MEASURE

256 x
256

1024 x
1024

8192 x
8192

1024 x
16384

16384 x
1024

256 x 256 1024 x
1024

8192 x
8192

1024 x
16384

16384 x
1024

1 0.2 0.6 3.0 1.7 1.7 92.0 1136.4 23475.1 8920.0 11790.0

2 0.2 0.6 3.0 1.6 1.8 140.0 1451.8 44363.1 11254.3 16421.6

4 0.4 0.9 1.1 2.1 2.0 121.3 1291.2 41573.8 8988.7 14626.0

6 0.5 0.8 1.3 2.2 2.2 129.6 1431.8 50393.2 11497.5 18232.2

8 0.6 1.0 3.1 5.9 2.5 109.3 1219.3 42246.1 8067.0 11327.3

12 0.9 2.7 4.0 2.7 4.1 132.3 1332.0 49665.1 9813.3 14687.7

16 1.4 2.1 2.2 3.3 3.2 188.4 1155.6 41630.9 15371.8 21510.2

24 1.7 3.3 4.9 4.2 4.9 218.7 1490.1 46190.4 17656.9 23818.4

32 1.7 2.6 4.9 3.7 4.2 118.4 691.9 21420.6 10963.8 12754.6

36 3.7 3.7 104.4 44.8 8.0 76.3 580.6 21054.1 5873.7 5770.3

48 2.7 2.9 23.7 6.3 7.0 146.6 794.7 24380.8 11959.5 13919.0

64 2.1 2908.0 22.3 7.2 7.6 139.2 603.7 16676.5 8915.7 8342.5

128 3.6 3.1 5.4 5.4 11.8 157.2 537.3 12982.7 6673.0 5885.1

256 5.6 7.6 13.8 6.4 6.2 136.7 9704.8 7622.9 5661.6 2429.8

Table 2: Time needed for plan creation relating to the same 2D complex to complex DFT performed on Table 1.

By summarizing the results of our initial benchmarks, we can identify some strategies for improving the performance of the
FFTW library:

• Using small size arrays, the parallel performance of FFTW degrades significantly when we use more than one node (e.g.
when we pass from a shared memory to a distributed memory system);

• Using more than one node the best performance will be obtained using pure MPI communications;

• If we increase the number of points in the arrays (especially on the last index, but see footnote 1), the performance
should significantly improve;

• Generally, it may not be advantageous to use more cores than the number of points of the index involved in the domain
decomposition;

• When the size of the first index is not a multiple of the numbers of cores, the performance decreases.

Thus, considering the limitations above, we have developed a routine that improves the auto-tuning mechanism of the FFTW

6

Autotuning of FFTW Library for Massively Parallel Supercomputers
library by changing the number of cores used. A simple scheme of the structure of the algorithm that we use in this routine is
shown in Algorithm 1. This subroutine, having as input the size of the index involved in the parallel domain decomposition of
the array that we want to use (Nx), and the number of available cores (Np), gives us the optimal number of cores in order to
maximize the performance.

Algorithm 1:Algorithm used to adapt the number of cores used for computation to the
size of the array.

3, Performance of the 3D FFTW auto-tuning algorithm using a 2D Domain Decomposition algorithm

This section will be devoted to removing some bottlenecks of the FFTW library related to the DFT execution of
multidimensional arrays on massively parallel supercomputers. For this reason the tests reported in this section were performed
on the FERMI cluster. For simplicity we will analyze only the case of 3D DFT execution, but our results can be easily extended
to other multidimensional arrays. The first part of this section will be devoted to the comparison between the performance of the
standard parallel decomposition used by the FFTW library and the performance of the 2D Domain decomposition that we have
implemented. The last part of this section will be dedicated to the description of our auto-tuning mechanism, used to switch from
the standard domain decomposition algorithm to the new one.

For our comparison we selected seven 3D arrays, whose sizes are: 128x128x128, 256x256x256, 512x512x512,
1024x1024x256, 1024x1024x512, 1024x1024x1024, 1024x1024x2048. We can see that the sizes of the index involved in the
standard parallel domain decomposition are comparable with the ones used in Section 2 (NB: the last index in the case of
FORTRAN, see footnote 1).

We have carried out a scalability test, using from 256 to 2048 cores, comparing the performance of the two algorithms using
these seven data arrays. As before, the execution times for these tests are first averaged over 256 runs, and then reported in Table
3.

Sistem & Solver Number of Cores

Domain Decomposition N. of Points 256 512 1024 2048 4096

Slab Decomposition 128x128x128 8 10 14 21 31

256x256x256 22 28 35 42 57

512x512x512 175 119 161 154 142

1024x1024x256 376 420 530 524 514

1024x1024x512 788 499 640 615 575

1024x1024x1024 1626 1047 741 693 702

1024x1024x2048 3275 2160 1598 814 798

2D Decomposition 128x128x128 23 2 1 1 0

256x256x256 188 13 8 4 2

512x512x512 1718 111 73 33 17

1024x1024x256 1723 963 625 310 150

1024x1024x512 1718 980 632 310 151

1024x1024x1024 1722 984 632 313 151

1024x1024x2048 1722 984 631 311 152

Table 3: Execution times (ms) of seven 3D complex-to-complex DFT, performed using FFTW 3.3 on FERMI cluster using from 256 to 2048 cores, comparing
the performances of both the Slab and the 2D decomposition algorithms.

7

Autotuning of FFTW Library for Massively Parallel Supercomputers

256 512 1024 2048 4096

2,10E+6 0.4 5.2 14.4 21.6 63.9

1,68E+7 0.1 2.2 4 .5 10.7 29.1

1,34E+8 0.1 1.1 2 .2 4.6 8.5

2,68E+8 0.2 0.4 0 .8 1.7 3.4

5,37E+8 0.5 0.5 1 .0 2.0 3,8

1,07E+9 0.9 1.1 1 .2 2.2 4,6

2,15E+9 1.9 2.2 2 .5 2.6 5.2

RATIO Slab/2DDD

Configuration N. of points
Number of Cores

1024x1024x2048

128x128x128

256x256x256

512x512x512

1024x1024x256

1024x1024x512

1024x1024x1024

Table 4: Ratio between execution times using the 2D Domain Decomposition algorithm and the same time using standard
Slab Decomposition. Color code: red cells: time of standard FFTW < time of 2D decomposition, yellow cells: time of
standard FFTW ~ time of 2D decomposition, green cells: time of standard FFTW > time of 2D decomposition and blue
cells: time of standard FFTW >> time of 2D decomposition.

In Table 4 we show the ratio between the execution times of the DFT using standard Slab Decomposition and 2D
Decomposition respectively. In this table the red cells indicate the cases where it is more opportune to use slab decomposition
(ratio ≤ 1), yellow cells where the results of the two algorithms are comparable (1 < ratio ≤ 2), green cells where it is
advantageous to use the 2D3 algorithm (2 < ratio ≤ 10), and finally blue cells where it is very advantageous to use the 2D
Decomposition (ratio > 10). We can see from the table that if we are using few cores (i.e. 256, as reported on Table 4), then the
best performances will be obtained using Slab Domain decomposition. On the other hand, if we use thousands of cores,
especially on small size arrays, the 2D Domain Decomposition algorithm will be much more efficient than the standard Slab
Decomposition method. Our tests show in particular that the 2D3 algorithm appears to be up to 63 times faster than the Slab
Decomposition algorithm.

The significance of these benchmarks becomes clearer if we plot the execution times reported in Table 3 (see Figure 5). It is
evident from the figure that when using small size arrays the standard FFTW does not scale beyond 256 cores. Indeed, as
expected, when the number of cores exceeds the size of the first index of the array, the time of execution of the DFT beg ins to
increase. Conversely, the time of execution of the 2D Decomposition algorithm continues to scale ideally even using thousand of
cores, although when we use only 256 cores its execution time is longer than the time obtained using the Slab Decomposition
algorithm.

This is more evident from Figure 6, where we show the ratio between the execution time of DFT of Table 3 and the
corresponding time obtained using standard FFTW on 256 cores. In this figure, all lines starts from the same position. Dotted
lines are related to standard FFTW efficiency profile, whereas dashed lines are related to 2D Domain Decomposition ones. In
other words, this figures plots the times of execution of the algorithms normalized to the standard FFTW execution time on 256
cores. As a comparison, in the same figure we plot also the line of ideal scalability (red continuous line). It is easy to see that all
2D Decomposition lines scale ideally, whereas when the number of cores exceed the size of the index involved in the parallel
domain decomposition (the last in our case), the standard FFTW shows a very bad scalability (ratio > 1).

Finally, in Table 5 we show the times needed to create the corresponding plans for DFT in Table 3. In order to quantify better
the advantages obtained by using this algorithm, we report also the time cost to create the same plans using standard FFTW and
the FFT_ESTIMATE flag. As we can easily see from this table, the computational cost for the creation of a plan using 2D
Decomposition is always comparable with the one obtained using the FFTW_ESTIMATE flag (i.e. the same order of magnitude
of the time needed to execute the DFT) and significantly smaller than the one obtained using the FFTW_MEASURE together
with the Slab Decomposition. This observation is not surprising, since it is due to the different method used in the 2D algorithm
to create a plan: using 2D Domain Decomposition, we compute 1D DFTs for each core, whereas using Slab Decomposition we
perform a series of 2D DFTs for each core and moreover creating a 1D plan is clearly faster than creating a 2D plan.

8

Autotuning of FFTW Library for Massively Parallel Supercomputers

Figure 5:Plot of the execution times shown in Table 3. Dotted lines are referred to Slab Decomposition, whereas dashed lines to 2D Decomposition.

Figure 6: Ratio between the times of execution (see Tab.3) and the corresponding time obtained using standard FFTW on 256 cores. The red and continuous line
is the ideal scalability line. Dotted lines are related to standard FFTW efficiency, whereas dashed lines are related to 2D3 efficiency.

9

Autotuning of FFTW Library for Massively Parallel Supercomputers

Time Ratio Time Ratio Time Ratio Time Ratio Time Ratio

128x128x128 437 1.0 545 1.0 644 1.0 644 1.0 725 1.0

256x256x256 270 1.0 320 1.0 445 1.0 517 1.0 597 1.0

512x512x512 45 1.0 172 1.0 200 1.0 271 1.0 382 1.0

1024x1024x256 65 1.0 169 1.0 255 1.0 356 1.0 355 1.0

1024x1024x512 60 1.0 74 1.0 250 1.0 311 1.0 389 1.0

1024x1024x1024 65 1.0 73 1.0 174 1.0 272 1.0 385 1.0

1024x1024x2048 74 1.0 110 1.0 88 1.0 246 1.0 364 1.0

128x128x128 2252 5.1 2731 5.0 3569 5.5 4098 6.4 4872 6.7

256x256x256 3137 11.6 4242 13.2 5826 13.2 6884 13.3 8086 13.5

512x512x512 3346 74.4 7836 45.7 11342 45.7 11639 43.0 14213 37.2

1024x1024x256 16150 275.0 27737 164.0 37568 147.1 43094 121.1 42621 119.9

1024x1024x512 21288 352.6 19060 257.4 39868 159.7 37256 120.0 40797 104.7

1024x1024x1024 16404 251.2 14472 198.8 34047 196.2 39178 144.2 44176 114.7

1024x1024x2048 22125 297.8 21209 192.2 12809 146.2 50450 205.2 45103 124.0

128x128x128 1958 4.5 608 1.1 573 0.9 443 0.7 343 0.5

256x256x256 7903 29.3 1381 4.3 1171 2.6 1063 2.1 998 1.7

512x512x512 42684 949.1 4741 27.6 2984 14.9 2419 8.9 2092 5.5

1024x1024x256 239 3.7 32205 190.4 17605 69.0 8077 22.7 5851 16.5

1024x1024x512 238 3.9 145 2.0 154 0.6 65 0.2 46 0.1

1024x1024x1024 234 3.6 150 2.1 138 0.8 68 0.3 48 0.1

1024x1024x2048 234 3.1 146 1.3 141 1.6 67 0.3 49 0.12D Decomposit ion Measure

256 512 1024 2048 4096

Slab Decom posit ion

Est imate

Measure

Sistem & Solver Number of Cores

Domain Decomposition Method N. of Points

Table 5: Time needed to create a Plan (ms). We analyze the same cases of Tables.3 and 4, including also the time needed to create a plan using the
FFTW_ESTIMATE flag as comparison. In the ratio columns we show the ratio between the time of creation, and the ones obtained using standard Slab
Decomposition algorithm and the FFTW_ESTIMATE flag. We have: a red box when Ratio ≥ 100; a yellow box when 10 ≤ Ratio < 100; a green box when 1 ≤
Ratio < 10; and a blue box when Ratio < 1. It is evident that the time cost of a plan creation using 2D3 is comparable with the time needed to create a plan using
standard FFTW library and the FFTW_ESTIMATE flag.

Summarizing the results of our comparison activity, we found that the use of the 2D domain Decomposition algorithm is
particularly useful when the number of usable cores exceeds the size of the index involved in the parallel domain decomposition.
When the size of this index is comparable with the number of usable cores, it may be advantageous using 2D decomposition,
since it takes much less time to create the plan.

Starting from these results it is relatively simple to improve the performance of FFTW library enhancing its auto-tuning
mechanism. We check if the number of cores exceed the size of the index involved in parallel domain decomposition, and thus
change the parallel domain decomposition algorithm used. One simple algorithm that we can implement is reported in
Algorithm 2.

10

Autotuning of FFTW Library for Massively Parallel Supercomputers

In order to further improve the performance of this auto-tuning algorithm it is possible to include a modified version of
Algorithm 1. The result of this merging operation is shown in Algorithm 3. These algorithms were used to create a library that
can significantly improve the performance of standard the FFTW library on massively parallel supercomputers. This library has
already been tested on the FERMI cluster, obtaining the best performances possible for the two algorithms.

Conclusions

 We have improved the performance of the auto-tuning mechanism already present in FFTW using two different approaches:
• For multidimensional arrays, we changed the number of cores involved in the DFT execution. Indeed, it is already

known that the performance of FFTW is severely limited by the size of the index in which the domain decomposition is
done. Our approach was to create a FORTRAN tool that changes the number of used cores to the size of the index
involved in the domain decomposition, if the number of usable cores exceed the size of this index. This approach has
proven to be particularly useful for solving 2D DFT problems.

• For 3D arrays, we change the domain decomposition algorithm from Slab to 2D. This new algorithm gave us
performances up to 63 times better than standard algorithm (see Table 4). Since this algorithm scales almost up to N2

cores on cubic arrays with size of N3 points (whereas standard FFTW scales as N), if used on massively parallel
supercomputers, this new algorithm can give us a nearly ideal scalability of at least up to several thousands of cores
(also for relatively small data arrays). We have already implemented this algorithm in a library that switches from
standard to 2D domain decomposition allowing us to always achieve the best performance possible for the two
algorithms.

As expected, the use of these algorithms (especially Algorithm 3) can greatly improve the performances of the FFTW library on
modern massively parallel supercomputers. The 2D Domain Decomposition algorithm could be extended to multi-dimensional
systems (higher than 3D systems), and in the next months it will be the subject of further research by CINECA.

Acknowledgements

This work was financially supported by the PRACE-2IP project (10) funded in part by the EUs 7th Framework Programme
(FP7/2007-2013) under grant agreement no. RI-283493.

The work is achieved using the PRACE Research Infrastructure resources FERMI and PLX at CINECA in Italy.
We thank S. Soner and D. Erwin for providing constructive comments and help in improving the contents of this

paper.
11

Algorithm 2: The first simple algorithm used to switch
from standard slab to 2D domain decomposition

Algorithm 3: An improved version of Algorithm 2, that includes also the main features
of Algorithm 1.

Autotuning of FFTW Library for Massively Parallel Supercomputers
References

(1) Cooley, J. W. & Tukey, J., 1965. An algorithm for the machine calculation of complex Fourier Series. Mathematics of
Computation, Issue 19, pp. 297-301

(2) M. Frigo & S. G. Johnson, 2013, Available at: http://www.fftw.org/
(3) M. Frigo & S. G. Johnson, "The Design and Implementation of FFTW3", Proceedings of the IEEE 93 (2005) 216
(4) CINECA, s.d. PLX cluster. Available at: http://www.hpc.cineca.it/content/ibm-plx-gpu-user-guide
(5) Intel, s.d. Xeon Westmere. Available at: http://ark.intel.com/products/48768/Intel-Xeon-Processor-E5645-(12M-Cache-2_40-GHz-5_86-

GTs-Intel-QPI)
(6) CINECA, s.d. FERMI cluster. Available at: http://www.hpc.cineca.it/content/fermi-reference-guide
(7) IBM BLUE GENE/Q. Available at http://www-03.ibm.com/systems/technicalcomputing/solutions/bluegene/
(8) R. Schultz, 2008, 3D FFT with 2D decomposition, CS project report, Center for molecular Biophysics, Available at:

https://cmb.ornl.gov/members/z8g/csproject-report.pdf
(9) N. Li, & S. Laizet, 2010. “2DECOMP&FFT – A highly scalable 2D decomposition library and FFT interface.”, Cray

User Group 2010 Conferences, Edinburgh.
(10) PRACE: Partnership for advanced Computing in Europe. Available at http://www.prace-ri.eu

12

http://www.fftw.org/
http://www.prace-ri.eu/
https://cmb.ornl.gov/members/z8g/csproject-report.pdf
http://www-03.ibm.com/systems/technicalcomputing/solutions/bluegene/
http://www.hpc.cineca.it/content/fermi-reference-guide
http://ark.intel.com/products/48768/Intel-Xeon-Processor-E5645-(12M-Cache-2_40-GHz-5_86-GTs-Intel-QPI)
http://ark.intel.com/products/48768/Intel-Xeon-Processor-E5645-(12M-Cache-2_40-GHz-5_86-GTs-Intel-QPI
http://ark.intel.com/products/48768/Intel-Xeon-Processor-E5645-(12M-Cache-2_40-GHz-5_86-GTs-Intel-QPI
http://www.hpc.cineca.it/content/ibm-plx-gpu-user-guide

	Auto-tuning of the FFTW Library for Massively Parallel Supercomputers
	Conclusions

