
Hadoop as a solution for
data-intensive

scientifi c computing

“Data-Day” – ICTP – Trieste – 05/09/2013

Stefano Alberto Russo
CERN IT Department

● What is Hadoop/MapReduce?

● Scientific codes and Hadoop - limitations

● Scientific codes and Hadoop - solutions

● A real case: high energy physics analysis

● Conclusions

Topics

“Standard” distributed computing model:
 storage and computational resources of a cluster as two
 independent, well logically-separated components.

Background

Bottleneck for data-intensive applications!
Big data

Two components:

1. The Hadoop Distributed
 File System (HDFS)

2. The MapReduce
 computational model
 and framework

● Open Source

● Widely used
 (Facebook, Yahoo..)

The Hadoop/MapReduce model

New idea: overlap storage elements with the computing ones

 the computation can be scheduled on the cluster elements
 holding a copy of the data to analyze: data locality

On HDFS, files are:

● Stored by slicing them
 in chunks (i.e. 64 MB)

● ..which are placed across
 the Hadoop cluster in a

 configured number of
 replicas (usually 3)
 for data redundancy
 and workload distribution.

- No RAID
- Commodity hardware

(Low cost disks)

The Hadoop Distributed File System (HDFS)

FILE

Chunk Chunk Chunk

The MapReduce model and framework

Chunk 3

Chunk 1

Chunk 2

Chunk 7

Chunk 5

Chunk 4

Chunk 6

Node 1

Node 2

Node 3

Map(3)

Map(1)

Map(7)

Map(2)

Map(5)

Map(6)

Map(4)

Reduce(All)

The Map() functions are
executed in-place on the chunks,

on the nodes where data is stored.

The Map() functions are
executed in-place on the chunks,

on the nodes where data is stored.

FILE CPUS

● Example: word count
● You do not ask Hadoop for cpu
slots, you ask to analyze a dataset
● Fault tolerance

!

The MapReduce model and framework

Another basic assumption: a trivial Reduce phase.
easy to compute and almost I/O free

... a problem which can be split in
independent subproblems

MapReduce requires an embarrassing parallel problem.

data locality can be exploited also for

codes which produce huge amounts of

data like preprocessing (first replica on

the node), but this data should not be

processed by a Reduce

 NOT I/O

OPTIMIZED

● No problems to run without a Reduce

The MapReduce model and framework

● The Hadoop/MapReduce framework and its native API are written in
the Java programming language.

● Support for other programming languages is provided, but:
serious limitations on the input/output side when working with
binary data sets.

Hadoop streaming: allows to run a custom
code which reads data from stdin, and which
returns data from stdout.

(Hadoop was developed with textual analyses in mind)

● Dataset has to be in plain text!

porting on Java is not an option

Scientific codes on Hadoop

Scientific codes:
● In general in Fortran, C, C++: not Java
● Often developed for years to model complex scientific processes,
 possibly by a joint effort of a community

non-Java code on Hadoop only on textual datasets (via Streaming)

scientific codes in Fortran, C, C++ etc. which have to operate
on complex (binary) data sets, just cannot be executed on

Hadoop/MapReduce with the current implementation.

+

=

Scientific codes on Hadoop (2)

1) Transparency for the data:
 let binary datasets be uploaded on HDFS without changing format;

2) Transparency for the code:
let the original code run without having to modify a single line;

3) Transparency for the user:
 avoid the users to have to learn Hadoop/MapReduce, and let them

 interact with Hadoop in a classic, batch-fashioned behavior.

“Scientific code” definition onwards: a code which cannot be ported to
Java and that has to operate on a binary dataset.

How to run them on Hadoop?
What to ensure when looking for a solution?

..and we restrict to the
class of embarrassing
parallel problems.

● Binary data cannot be read in chunks (corruption)
● One Map = One file vanishes data locality
● One Map = One file = one HDFS block is fine
 (set chunk size >= file size)

Transparency for the (binary) data:

● Data can be stored on the Hadoop cluster without
conversions, in its original format.

Mission: transparency (1)

 Other approaches are possible, but much more effort required

...per file!

● Map tasks will be in charge of analyzing one file, in its
entirety

● Corruptions due to chunking binary data are avoided

And what about parallelism?

FILE(s)

Chunk Chunk Chunk

Standard Hadoop
MapReduce approach

New proposed approach

FILE

Chunk Chunk Chunk

FILE FILE

SET OF FILES
Input

Parallelizable
unit

Input

Parallelizable
unit

One Map Task = One chunk = one file to analyze

 Working conditions imposed:

Now the parallelization degree goes with the number of files!

Mission: transparency (1.1)

1. Hadoop's Java Map and Reduce tasks as wrappers for the real code

2. Let the real code access the data from a standard file system

For every map task:

● Local replica available:

● Local replica not available:

Transparency for ROOT:Transparency for the code:

HDFS file (block) to analyze can be found and therefore
accessed on the local, standard file system, i.e. Ext3.

access the file to analyze via network using Hadoop's
file system tools

Mission transparency (2)

or.. use FUSE

Bottom line: bypass Hadoop

Mission: transparency (3)

Easy to write a Java MapReduce job acting as a wrapper for user's code,
i.e RunOnHadoop.java:

 # hadoop run RunOnHadoop “user Map code” “user Reduce
 code” “HDFS input dataset“ “HDFS output location”

Transparency for the user:

Reminder:

on Hadoop you do not ask for cpus,
you ask to analyze a dataset.

Mission: transparency (3)

Few guidelines:
● User Map will receive as the first argument the file on which to operate on

● User Map output has to follow a conventional naming schema
to be accessed from the Reduce

● User Reduce will receive from the standard input (one per line) the
locations on HDFS of the files to merge in the final result.

Transparency for the user:

 # hadoop run RunOnHadoop “user Map code” “user Reduce
 code” “HDFS input dataset“ “HDFS output location”

Under the hood..

Hadoop/MapReduce

framework

HDFS

 # hadoop run RunOnHadoop “user Map code” “user Reduce
 code” “HDFS input dataset“ “HDFS output location”

Java Reduce task
(wrapper)

Obtain file location,

 if local access or not

Under the hood..

Hadoop/MapReduce

framework

HDFS

 # hadoop run RunOnHadoop “user Map code” “user Reduce
code” “HDFS input dataset“ “HDFS output location”

 User
Map code

Java Reduce task
(wrapper)

Binary input
Data set

Under the hood..

Hadoop/MapReduce

framework

HDFS

 # hadoop run RunOnHadoop “user Map code” “user Reduce
code” “HDFS input dataset“ “HDFS output location”

 User
Map code

Java Reduce task
(wrapper)

Binary input
Data set

Under the hood..

Hadoop/MapReduce

framework

HDFS
Binary
output

 # hadoop run RunOnHadoop “user Map code” “user Reduce
code” “HDFS input dataset“ “HDFS output location”

 User
Map code

Binary output
HDFS location

Java Reduce task
(wrapper)

Binary input
Data set

Under the hood..

Hadoop/MapReduce

framework

HDFS
Binary
output

 # hadoop run RunOnHadoop “user Map code” “user Reduce
code” “HDFS input dataset“ “HDFS output location”

 User
Map code

Binary output
HDFS location

Binary output

HDFS location

Java Reduce task
(wrapper)

Java Reduce task
(wrapper)

Binary input
Data set

Under the hood..

Hadoop/MapReduce

framework

HDFS
Binary
output

User
Reduce code

 # hadoop run RunOnHadoop “user Map code” “user Reduce
code” “HDFS input dataset“ “HDFS output location”

All binary

outputs

 User
Map code

Binary output
HDFS location

Binary output

HDFS location

Java Reduce task
(wrapper)

Java Reduce task
(wrapper)

Binary input
Data set

Under the hood..

Hadoop/MapReduce

framework

HDFS
Binary
output

User
Reduce code

 # hadoop run RunOnHadoop “user Map code” “user Reduce
code” “HDFS input dataset“ “HDFS output location”

All binary

outputs

 User
Map code

Binary output
HDFS location

Binary output

HDFS location

Java Reduce task
(wrapper)

Java Reduce task
(wrapper)

Binary input
Data set

Final

output

The approach has been tested on a real case: the top quark pair
production search and cross section measurement analysis
performed by the ATLAS Udine Group on LHC data

A real case: a top quark analysis (1)

Basics of the analysis:

Cut-and-count code: every event undergoes a series of
selection criteria, and at the end is accepted or not. (Map)

Cross section obtained by comparing the number of selected
events with the total. (Reduce)

PARTICLE COLLISIONS EVENTS ARE INDEPENDENT

+ luminosity, efficiency in selection of signal events, expected background events.

A real case: a top quark analysis (2)

The dataset, data taking conditions:

data has been taken with all the subsystems of the ATLAS detector in fully
operational mode, with the LHC producing proton-proton collisions
corresponding to a centre of mass energy of 7 TeV with stable beams
condition during the 2011 run up to August.

The dataset, in numbers:
● 338,6 GB (considering only data related to this analysis)
● 8830 files
● average size: ~ 38 MB
● maximum file size: ~ 48 MB

Every file fits in the default Hadoop chunk size of 64 MB!

Data copied straightforward from Tier-0 to the Hadoop ClusterData copied straightforward from Tier-0 to the Hadoop Cluster

LHC produces 15 Petabytes/year!

A real case: a top quark analysis (3)

The test cluster:
● Provided by CERN IT-DSS Group

● 10 nodes, 8 cpus per node

● Max 10 Map tasks per node

● Other details are not relevant

Preparing the top quark analysis code:

● ROOT-based (C++), treated as a black magic box

● Compiled without any modification!

● Has ben stored on the Hadoop File System

● For the data: Data has been stored on the Hadoop cluster without
conversions, in its original format.

● For the code: An arbitrary executable (ROOT) has been run without
any modification

● For the user: User's Map and Reduce code had to follow just few
guidelines, but then:

 # hadoop run RunOnHadoop “user Map code” “user Reduce
 code” “HDFS input dataset“ “HDFS output location”

Results (1)

AGAIN: transparency

Results (2)

Worked as expected:

● Data locality ratio: 100%,

Using the Delayed Fair Scheduler By Facebook, which has been
designed for (and tested to) give data locality ratios close to 100%
in the majority of the use-cases.

Results (3)

Data locality 100% and data transfers at runtime:

Conclusions – Pros and Cons

Network usage for accessing the data reduced by several orders of
magnitude thanks to Hadoop's data locality feature

Transparency can be achieved quite easily

Bypassing some Hadoop components permits to:

● run standard code on standard, local file systems at maximum speed
● fine tuning (SSD caching, BLAS/LAPACK..)

..while:
exploiting the innovative features of Hadoop/MapReduce and HDFS

Hadoop provides an easy to manage, robust and scalable infrastructure

Project open source widely used and well maintained

Conclusions – Pros and Cons

Only embarrassing parallel problems
(MPI etc to be investigated)

Hadoop forced to work unnaturally
bugs when working with blocksize > 2 Gb to be fixed

(already investigated by the community)

...worth to investigate!

...positive feedback received (i.e. Uni Muenchen)

My take: with Hadoop you have a distributed file system which is
interesting from various points of view

..and you can spot data locality for embarrassing parallel problems

Conclusions – Pros and Cons

 Thanks for your attention!

Network usage for accessing the data reduced by several orders of magnitude thanks to
Hadoop's data locality feature

Transparency can be achieved quite easily

Bypassing some Hadoop components permits to:
● run standard code on standard, local file systems at maximum speed
● fine tuning (SSD caching, BLAS/LAPACK..)

..while:
exploiting the innovative features of Hadoop/MapReduce and HDFS

Hadoop provides an easy to manage, robust and scalable infrastructure

Project open source widely used and well maintained

Only embarrassing parallel problems (MPI etc to be investigated)

Hadoop forced to work unnaturally
bugs when working with blocksize > 2 Gb to be fixed (already
investigated by the community)

 ...questions? stefano.alberto.russo@cern.ch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

