BIG DATA IN THE CLOUD: CHALLENGES AND OPPORTUNITIES

MARY-JANE SULE

&

PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON

Overview

- * Introduction
- * Multiple faces of Big Data
- * Challenges of Big Data
- * Cloud Computing: Challenges and Opportunities.
- * Suggestions
- * Conclusion

Research Area

- * Presently there are 5 PhD students and 13 awarded PhDs that are working or have worked in the following research areas together with Prof. Maozhen Li at the Brunel University
- * Research topics include:
 - High performance computing (grid and cloud computing)
 - Big data analysis (MapReduce/Hadoop)
 - * Semantic Web, artificial intelligence, multi-agent systems
 - * Information retrieval, content based image annotation and retrieval
 - * Distributed machine learning techniques
 - Context aware mobile computing

INTRODUCTION

* Big Data has always been around, its been relative to its time.

Cisco Forecasts 2 Exabytes per Month of Mobile Data Traffic in 2013

Source: Cisco, 2009

Multiple faces of Big Data

- * For scientists, Big-Data is about getting better output from simulations or handling output from simulations
- * Data is also coming from sensors (New world of IPV6 is about the Internet of objects) here data can be used by different fields

Integrating Data can never be over -emphasized

CHALLENGES OF BIG DATA

* Storage

- * Clearly not enough hard disks/devices. Distributed storage is still not enough, manufacturers cannot make enough storage devices in time. Speed in writing to devices, bigger data paths/data-bus
- * Processing
 - * Integrating data using Filters
 - * "What" Data and "How"?
 - * Effective Data processing system Design
 - * ??Power
 - Internationalisation / Standardisation
 - Latency and Bandwidth
- Taxonomy and Ontology
 - How to classify big data No standard way of doing that yet
- * Security / Privacy
 - * What is to be secured the Data sources? As IT logs are also now a source of big data

BIG DATA – SQL vs NoSQL

- * In Big Data SQL which are used for RDBMS provide ACID
 - * Atomicity = all or nothing
 - * Consistency = same data values b4 and afta.
 - * Isolation = hidden events during transactions (a form of security)
 - * Durability = survive subsequent malfunction
- * NoSQL provide BASE
 - * Basically Available = since it allows parts of the system to fail.
 - * Soft Sate = objects with simultaneous values.
 - Eventually consistent = achieved over time.

Cloud Computing

* Definition

Cloud Delivery Types

Cloud Computing

- * With Cloud computing here IT expertise is narrowed and professionalism is brought into play. one concentrates on the main issue at hand and builds professionalism and expertise, well grounded in a particular field.
- * Allows for horizontal provisioning as against the present vertical provision.(Elasticity)

Cloud Computing and Data Management

- * Types of Data
 - * Transactional Data Management
 - * ACID (Atomicity, Consistency, Isolation, and Durability)
 - * Risk / Privacy (especially when placed in clouds)
 - * Typically cannot scale on the cloud
 - * Analytical Data Management
 - Scalability (Shared-Nothing Architecture)
 - * Availability is key over ACID
 - * CAP's theorem??

Cloud Computing - Open issues

- * The present Cloud computing design has some issues yet to be solved:
 - * Basic DBMS has not been tailored for Cloud Computing
 - * Data Acts is a serious issue so it would be ideal to have Data Centres located closer the user than the provider.
 - * Data Replication must be carefully done else it affects data integrity and gives an error prone analysis
 - * Trust in the event of mission critical data.
 - * Some deployment models are still in their formative stage.

SUGGESTIONS

- * Data management
 - * Life-cycle management can start now, once information has been extracted from the data
- * Better software design
 - * Build software applications around the expected data/information processing and not around CPU processing.
- * Cloud computing: Data processing in the could should provide the following:
 - * Efficiency
 - * Fault tolerance: does not have to restart a query if 1 of d nodes in the query fails but then comes with a trade-off for performance.
 - * Ability to run in a heterogeneous environment: shared task across cloud compute nodes.
 - Ability to operate on encrypted data: to build trust data maybe encrypted before uploaded onto the clod and the DBMS application should be able to work on the data without decrypting it.
 - * Ability to interface with business intelligence products or other applications

Example of Data Management lifecycle

Plan

Definition of what & how

Collectio

• From sensors, measurements & studies

rocessing

• Integrate, transform

Publish

Share processed data

Analyze

Discover & inform

Archive

Long term storage

. Discard No longer useful

The Cloud Opportunities

- * Cloud provide opportunities for real time data streams analysis because cloud systems tend to provide scalability "scale-free", fault tolerance, cost effectiveness and ease of use.
- * Current Research areas
 - * Science, acquisition, conditioning & evaluation
 - * Online Analytics of interest here
 - * Framework:
 - * similarities to existing frameworks NoSQL & RDBMS
 - * Infrastructure
 - * How to implement framework(s)

(Note: security & privacy cut across all 3 items)

Suggested Cloud-based data processing model for Scientific applications

Online Analytics

* In time pass, most data were structured and mostly relational, mining for decision making was fairly easy with SQL-like technologies but Big Data has evolved now to include large volumes of unstructured data – speeches, emails, tweets, chats, etc. There came the need for a system that can accept ,process, store, analyze / re-analyze unstructured data to provide value for decision making.

MapReduce Framework in the Cloud

 MapReduce: is a programming paradigm based on two separate and distinct tasks performed on big data.

Its allowed for massive scalability across various servers but didn't allow for "plugability".

* These separate tasks are:

* Map: where the data is converted into individual elements and

* and Reduce: combines the result from the map into smaller set of tuples for further analysis.

Hadoop: an implementation of MapReduce Framework

- * Hadoop is based on the MapReduce framework
- * Schedules, monitors and re-executes tasks (this provides for fault tolerance).
- * Hadoop stack now includes components for query & storage in addition to MapReduce

An Example

Working with Data files

Batch organisation

- Files are used as main vehicle for transfer of data between phases and different clouds
- * The processing pipe-line is not time dependent and so each item could be implemented as batch operations.
- * Example could be HADOOP framework and starcluster (HPC) for processing

MOA as a framework for online analytics

- * A framework for Big Data Stream Mining which is written in Java it provides for:
 - * Storage for repeatable experiments
 - * Set of existing algorithms to use for analysis and
 - algorithms to easily extend the framework for new streams and analysis.
- * MOA=>data feed +algorithm + evaluation method = Results
- * With MOA data stream mining is done in real time, large scale machine learning
- * MOA allows developers to easily extend all the parts of the framework /architecture.
- * MOA is also easily used with Hadoop, S4 or storm this provides for a more robust and configurable system

An Example

On-line

Pre-processing

- Reduce
- merge
- extract

Processing

- Computation
- Indexing

Postprocessing

- Transform
- Analysis

Dynamic data streaming

- Data is passed from one cloud to another in-line (via network)
- * Each cloud in the pipe-line process is dependent on previous phase/cloud.
- * Examples: STORM framework and starcluster clouds.

CONCLUSION

- * Data processing on a cloud based cluster would provide added benefits such as fault tolerant, heterogeneous, ease of use, free and open, efficient, provide performance and "tool plug-ability" which most DBMS do not provide.
- * Combining different types of software such as MOA and Hadoop is a possible solution for online analytics of scientific data. A lot of extension work is still being done with the algorithm to provide even change detection and frequent pattern mining among others.

References & more information

- * http://moa.cs.waikato.ac.nz/overview/
- * http://www-01.ibm.com/software/data/infosphere/hadoop/mapreduce/

Thank you :-)