BIG DATA IN THE CLOUD: CHALLENGES AND OPPORTUNITIES **MARY-JANE SULE** & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON #### Overview - * Introduction - * Multiple faces of Big Data - * Challenges of Big Data - * Cloud Computing: Challenges and Opportunities. - * Suggestions - * Conclusion #### Research Area - * Presently there are 5 PhD students and 13 awarded PhDs that are working or have worked in the following research areas together with Prof. Maozhen Li at the Brunel University - * Research topics include: - High performance computing (grid and cloud computing) - Big data analysis (MapReduce/Hadoop) - * Semantic Web, artificial intelligence, multi-agent systems - * Information retrieval, content based image annotation and retrieval - * Distributed machine learning techniques - Context aware mobile computing #### INTRODUCTION * Big Data has always been around, its been relative to its time. Cisco Forecasts 2 Exabytes per Month of Mobile Data Traffic in 2013 Source: Cisco, 2009 #### Multiple faces of Big Data - * For scientists, Big-Data is about getting better output from simulations or handling output from simulations - * Data is also coming from sensors (New world of IPV6 is about the Internet of objects) here data can be used by different fields Integrating Data can never be over -emphasized #### CHALLENGES OF BIG DATA #### * Storage - * Clearly not enough hard disks/devices. Distributed storage is still not enough, manufacturers cannot make enough storage devices in time. Speed in writing to devices, bigger data paths/data-bus - * Processing - * Integrating data using Filters - * "What" Data and "How"? - * Effective Data processing system Design - * ??Power - Internationalisation / Standardisation - Latency and Bandwidth - Taxonomy and Ontology - How to classify big data No standard way of doing that yet - * Security / Privacy - * What is to be secured the Data sources? As IT logs are also now a source of big data #### BIG DATA – SQL vs NoSQL - * In Big Data SQL which are used for RDBMS provide ACID - * Atomicity = all or nothing - * Consistency = same data values b4 and afta. - * Isolation = hidden events during transactions (a form of security) - * Durability = survive subsequent malfunction - * NoSQL provide BASE - * Basically Available = since it allows parts of the system to fail. - * Soft Sate = objects with simultaneous values. - Eventually consistent = achieved over time. #### Cloud Computing * Definition #### Cloud Delivery Types #### Cloud Computing - * With Cloud computing here IT expertise is narrowed and professionalism is brought into play. one concentrates on the main issue at hand and builds professionalism and expertise, well grounded in a particular field. - * Allows for horizontal provisioning as against the present vertical provision.(Elasticity) ## Cloud Computing and Data Management - * Types of Data - * Transactional Data Management - * ACID (Atomicity, Consistency, Isolation, and Durability) - * Risk / Privacy (especially when placed in clouds) - * Typically cannot scale on the cloud - * Analytical Data Management - Scalability (Shared-Nothing Architecture) - * Availability is key over ACID - * CAP's theorem?? #### Cloud Computing - Open issues - * The present Cloud computing design has some issues yet to be solved: - * Basic DBMS has not been tailored for Cloud Computing - * Data Acts is a serious issue so it would be ideal to have Data Centres located closer the user than the provider. - * Data Replication must be carefully done else it affects data integrity and gives an error prone analysis - * Trust in the event of mission critical data. - * Some deployment models are still in their formative stage. #### SUGGESTIONS - * Data management - * Life-cycle management can start now, once information has been extracted from the data - * Better software design - * Build software applications around the expected data/information processing and not around CPU processing. - * Cloud computing: Data processing in the could should provide the following: - * Efficiency - * Fault tolerance: does not have to restart a query if 1 of d nodes in the query fails but then comes with a trade-off for performance. - * Ability to run in a heterogeneous environment: shared task across cloud compute nodes. - Ability to operate on encrypted data: to build trust data maybe encrypted before uploaded onto the clod and the DBMS application should be able to work on the data without decrypting it. - * Ability to interface with business intelligence products or other applications ### Example of Data Management lifecycle Plan Definition of what & how Collectio • From sensors, measurements & studies rocessing • Integrate, transform Publish Share processed data Analyze Discover & inform Archive Long term storage . Discard No longer useful #### The Cloud Opportunities - * Cloud provide opportunities for real time data streams analysis because cloud systems tend to provide scalability "scale-free", fault tolerance, cost effectiveness and ease of use. - * Current Research areas - * Science, acquisition, conditioning & evaluation - * Online Analytics of interest here - * Framework: - * similarities to existing frameworks NoSQL & RDBMS - * Infrastructure - * How to implement framework(s) (Note: security & privacy cut across all 3 items) # Suggested Cloud-based data processing model for Scientific applications #### Online Analytics * In time pass, most data were structured and mostly relational, mining for decision making was fairly easy with SQL-like technologies but Big Data has evolved now to include large volumes of unstructured data – speeches, emails, tweets, chats, etc. There came the need for a system that can accept ,process, store, analyze / re-analyze unstructured data to provide value for decision making. #### MapReduce Framework in the Cloud MapReduce: is a programming paradigm based on two separate and distinct tasks performed on big data. Its allowed for massive scalability across various servers but didn't allow for "plugability". * These separate tasks are: * Map: where the data is converted into individual elements and * and Reduce: combines the result from the map into smaller set of tuples for further analysis. ## Hadoop: an implementation of MapReduce Framework - * Hadoop is based on the MapReduce framework - * Schedules, monitors and re-executes tasks (this provides for fault tolerance). - * Hadoop stack now includes components for query & storage in addition to MapReduce #### An Example #### Working with Data files #### **Batch organisation** - Files are used as main vehicle for transfer of data between phases and different clouds - * The processing pipe-line is not time dependent and so each item could be implemented as batch operations. - * Example could be HADOOP framework and starcluster (HPC) for processing ## MOA as a framework for online analytics - * A framework for Big Data Stream Mining which is written in Java it provides for: - * Storage for repeatable experiments - * Set of existing algorithms to use for analysis and - algorithms to easily extend the framework for new streams and analysis. - * MOA=>data feed +algorithm + evaluation method = Results - * With MOA data stream mining is done in real time, large scale machine learning - * MOA allows developers to easily extend all the parts of the framework /architecture. - * MOA is also easily used with Hadoop, S4 or storm this provides for a more robust and configurable system #### An Example #### On-line #### Pre-processing - Reduce - merge - extract #### Processing - Computation - Indexing #### Postprocessing - Transform - Analysis #### Dynamic data streaming - Data is passed from one cloud to another in-line (via network) - * Each cloud in the pipe-line process is dependent on previous phase/cloud. - * Examples: STORM framework and starcluster clouds. #### CONCLUSION - * Data processing on a cloud based cluster would provide added benefits such as fault tolerant, heterogeneous, ease of use, free and open, efficient, provide performance and "tool plug-ability" which most DBMS do not provide. - * Combining different types of software such as MOA and Hadoop is a possible solution for online analytics of scientific data. A lot of extension work is still being done with the algorithm to provide even change detection and frequent pattern mining among others. #### References & more information - * http://moa.cs.waikato.ac.nz/overview/ - * http://www-01.ibm.com/software/data/infosphere/hadoop/mapreduce/ # Thank you :-)