
www.cineca.it

Hands-on: debugging (Totalview, Hands-on: debugging (Totalview,
addr2line, GDB) addr2line, GDB)

a.marani@cineca.it

Debugging on FERMI…Debugging on FERMI…

Debugging on FERMI is no easy task!

Error messages are often vague, and core files may be
rather incomprehensible…

However, there are some useful tools that can help on the task!

Before that, let’s see some general advice for the setting of a
debug session

Compiling for a debug sessionCompiling for a debug session

3 flags are required for compiling a program that can be
analyzed by debugging tools:

-g : integrates debugging symbols on your code, making them
“human readable” when analyzed from debuggers

-O0 : avoids any optimization on your code, making it execute
the instructions in the exact order they’re implemented

-qfullpath : Causes the full name of all source files to be added
to the debug informations

Other useful flagsOther useful flags

-qcheck Helps detecting some array-bound violations, aborting
 with SIGTRAP at runtime

-qflttrap Helps detecting some floating-point exceptions, aborting
 with SIGTRAP at runtime

-qhalt=<sev> Stops compilation if encountering an error of the
 specified lever of severity

-qformat Warns of possible problems with I/O format specification
(C/C++) (printf,scanf…)

-qkeepparm ensures that function parameters are stored on
 the stack even if the application is optimized.

FERMI compiling toolsFERMI compiling tools

GDB

addr2line

Totalview

GDBGDB

On FERMI, GDB is available both for
front-end and back-end applications

Front-end: gdb <exe>
Back-end: /bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gdb <exe>

It is possible to make a post-mortem analysis of the binary core
files generated by the job

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gdb <exe>
<corefile>

To generate binary core filed, add the following envs to runjob:
--envs BG_COREDUMPONEXIT=1
--envs BG_COREDUMPBINARY=*

‘*’ means “all the processes”. It is possible to indicate which ranks
generate its core by specifying its number

GDB – remote accessGDB – remote access

The Blue Gene/Q system includes support for using GDB
real-time with applications running on compute nodes.

IBM provides a simple debug server called gdbserver. Each
running instance of GDB is associated with one process or
rank (also called GDB client).

Each instance of a GDB client can connect to and debug one
process. To debug multiple processes at the same time, run
multiple GDB tools at the same time. A maximum of four GDB
tools can be run on one job.

…so, how to do that?

Using GDB on running applicationsUsing GDB on running applications

1) First of all, submit your job as usual;
llsubmit <jobscript>

2) Then, get your job ID;
llq -u $USER

3) Use it for getting the BG Job ID;
llq -l <jobID> | grep “Job Id”

4) Start the gdb-server tool;
start_tool --tool /bgsys/drivers/ppcfloor/ramdisk/distrofs/cios/sbin/gdbtool
--args “rank=<rank #> --listen_port=10000” --id <BG Job ID>

5) Get the IP address for your process;
dump_proctable --id <BG Job ID> --rank <rank #> --host sn01-io

Using GDB on running applicationsUsing GDB on running applications

6) Launch GDB! (back-end version);
 /bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gdb ./myexe

7) Connect remotely to your job process;
(gdb) target remote <IP address>:10000

8) Start debugging!!!

(Although you aren’t completely free…for example, command ‘run’
does not work)

addr2lineaddr2line

If nothing is specified, an unsuccesful job generates a text core
file for the processes that caused the crash…

…however, those core files are all but easily readable!

addr2line is an utility that permits to get from this file informations
about where the job crashed

Core filesCore files

Blue Gene core files are lightweight text files

Hexadecimal addresses in section STACK describe function
call chain until program exception. It’s the section delimited by
tags: +++STACK / —STACK

In particular, “Saved Link Reg” column is the one we need!

using addr2lineusing addr2line

From the core file output, save only the addresses in the Saved
Link Reg column:

Replace the first eight 0s with 0x:

On page 88 of IBM Redbook “Blue gene/Q application development” you can find a
Perl script (bgqtranslate.pl) that can do the replacement for you

Lauch addr2line:
addr2line –e ./myexe 0x018b2678
addr2line –e ./myexe < addresses.txt

TotalviewTotalview

TotalView is a GUI-based source code
defect analysis tool that gives you control
over processes and thread execution and
visibility into program state and variables.

It allows you to debug one or many processes and/or threads with
complete control over program execution.

Running a Totalview execution in back-end can be a bit tricky, as
it requires connection from FERMI to your local machine via ssh
tunneling to VNC server.

Using Totalview: preliminariesUsing Totalview: preliminaries

In order to use Totalview, first you need to have
downloaded and installed VNCviewer on your
local machine.
(http://www.realvnc.com/download/viewer/)

Windows users will also find useful Cygwin, a
Linux-like environment for Windows. During
installation, be sure to select “openSSH” from the
list of available packages.
(http://cygwin.com/setup.exe)

Once all the required softwares are installed, we are ready to start
preparing our Totalview session!

Using Totalview: preparationUsing Totalview: preparation

1) On FERMI, load tightvnc module;
module load tightvnc

2) Execute the script vncserver_wrapper;
vncserver_wrapper

3) Instructions will appear. Copy/paste to your local machine
(Cygwin shell if Windows) this line from those instructions:
ssh -L 59xx:localhost:59xx -L 58xx:localhost:58xx –N <username>@login<no>.fermi.cineca.it

where xx is your VNC display number, and <no> is the number of
the front-end node you’re logged into (01,02,07 or 08)

4) Open VNCViewer. On Linux, use another local shell and type:
vncviewer localhost:xx

On Windows, double click on VNCviewer icon and write
localhost:xx when asked for the server. Type your VNC password
(or choose it, if it’s your first visit)

Using Totalview: job script settingUsing Totalview: job script setting

5) Inside your job script, you have to load the proper module and
export the DISPLAY environment variable:

 module load profile/advanced totalview
export DISPLAY=fen<no>:xx

 where xx and <no> are as the above slide (you’ll find the
correct DISPLAY name to export in vncserver_wrapper
instructions)

6) Totalview execution line (inside your LoadLeveler script) will be

 as follows:
 totalview runjob –a <runjob arguments: --np, --exe, --args…>

7) Launch the job. When it will start running, you will find a
 Totalview window opened on your VNCviewer display!
 Closing Totalview will also kill the job.

Using Totalview: start debuggingUsing Totalview: start debugging

Select “BlueGene” as a parallel
system, and a number of tasks
and nodes according to the
arguments you gave to runjob
during submission phase.

Click “Go” (the green arrow) on
the next screen and your
application will start running.

WARNING: due to license issues, you are NOT allowed to run
Totalview sessions with more than 64 tasks simultaneously!!!

Out from TotalviewOut from Totalview

When you’ve finished using Totalview, please follow this
procedure in order to close the session safely:

1) Close VNCviewer on your local machine;

2) Kill the VNCserver on FERMI:
vncserver kill :x

x is the usual VNC display number, without the initial 0 (if
present);

3) On your first local shell, close the ssh tunneling connection
with CTRL+C.

Totalview Remote Display ClientTotalview Remote Display Client

An easier (and maybe safer)
way to use Totalview is
Totalview RDC (Remote

Display Client), a simple tool
that helps with submitting a job
already setted with the proper
characteristics (and with no

VNC involved)

RDC procedure isn’t fully operative yet, since we encountered
some firewall issues that lead to different behaviours depending
on the single workstation settings

Our System Administrators are looking into it.
Connecting with RDC will be soon a possibility!!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

