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Abstract. We report on excitonic spectra of armchair graphene nanoribbons
(AGNRs) obtained from a full many-body exact diagonalization of the Hubbard
model within low and intermediate correlation regimes and with a complete
characterization of the spin multiplicity of the calculated eigenstates. Our results
allow us to group these systems into three different families according to the
sequence of the one- and two-photon allowed states and the magnitude of the
respective optical oscillator strengths within the investigated correlation regime.
The oscillator strengths for the one-photon allowed transitions are found to be
lower than those obtained previously for zigzag semiconducting single-walled
carbon nanotubes, pointing out a qualitatively different photophysical behaviour
of AGNRs.
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1. Introduction

Boosted by the recent progress in the synthesis and isolation of single graphene layers [1–3],
graphene nanoribbons (GNRs) have attracted much attention because of the possibility of
opening a tunable electronic band gap in their electronic spectrum by changing their edge
structure and ribbon width. This would allow to overcome the gaplessness of graphene, which
is one of the main limitations preventing its application in electronic devices [4, 5]. Over the
last few years, progress in the bottom-up fabrication of GNRs has allowed high-quality stripes
of less than 10 nm width to be obtained, whose band gap can be exploited to make field-
effect transistors [6–9]. Until recently the electronic structure of GNRs with proper boundary
conditions at the edges has mostly been investigated with tight-binding (TB) methods for
π -electrons [10], the k · p two-dimensional (2D) Weyl–Dirac equation for free massless
particles with the Fermi velocity (106 m s−1) playing the role of an effective speed of light [11] or
ab initio density functional calculations [12], which have all been recently surveyed in several
excellent theoretical reviews [13–16]. GNRs are usually classified according to their type of
edge, either zigzag or armchair, even though disordered or more complicated regular types of
edges are possible. The electronic properties of armchair nanoribbons (AGNRs) are simpler than
those of zigzag ones because of the absence of zero-energy localized states. Furthermore, they
can be related to the electronic structure of zigzag single-walled carbon nanotubes (ZSWCNTs)
since the van Hove singularities occur at the centre of the Brillouin zone [17–19].

Although both the TB and the Weyl–Dirac equation predict that armchair GNRs with
pristine edges may be either semiconducting or metallic according to their width (oscillating
gap), it is now generally accepted also on the basis of ab initio and mean-field Hubbard model
results that AGNRs are always semiconducting, since the metallic state is unstable against
bond deformations at the edges, electron–electron interactions and longer-range hoppings, as
discussed by Cresti et al [20] and Rozhkov et al [21] in their reviews.

Optical selection rules and analytical expressions for the electron–light interaction matrix
elements obtained on the basis of the TB model for both armchair and zigzag GNRs and
different light polarizations (either parallel or perpendicular to the GNR edges) have also
recently been reported [22, 23] and discussed in relation to the previously determined optical
selection rules for SWCNTs [24, 25].

Besides the aforementioned studies based on independent-particle approximation, there
have also been several attempts to include many-body effects in GNRs at a further
level of theory, since electron–electron interactions are expected to be enhanced in low-
dimensional systems. Following closely the roadmap adopted for SWCNTs, many-body
effects in GNRs have been investigated with many-body perturbation theory ab initio
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GW–Bethe–Salpeter-based methods [26, 27], Pariser–Parr–Pople effective model Hamiltonians
for π -electrons incorporating longer-range Coulomb interactions [28, 29] and Hubbard model-
based approaches, either within the mean-field approximation applied to investigate the edge-
state in zigzag ribbons [17] or with configuration interaction calculations applied to both
armchair and zigzag edge geometry [30]. The validity of mean-field approximation when
applying the Hubbard model to graphene-based systems has also been recently debated [31–34],
in view of the low–intermediate value for the Hubbard correlation coupling strength (1<U/t <
2.2) which seems plausible for these systems.

In this work, we apply the small crystal approach (SCA) to perform an exact
diagonalization (ED) of the Hubbard Hamiltonian in order to obtain the full many-body
description of the electronic excitation spectrum of AGNRs of different widths. The SCA allows
us to use a minimal number of sites to sample the most relevant k-points in the Brillouin
zone that are critical for the electronic density of states (DOS) and optical oscillator strength
of the system under investigation. Previously, we applied this method to obtain the excitonic
structure of medium diameter semiconducting-like zigzag SWCNTs and investigated its profile
as a function of the Hubbard correlation coupling strength [36, 37]. Following the same strategy,
we choose two-leg ladder models mimicking AGNRs of different widths and consider optical
transitions with light polarization along the nanoribbon edges. In this way, we sample a set of
k-points equivalent to those considered for the van Hove singularities in the electronic DOS
and longitudinal optical matrix elements of zigzag SWNTs. By performing ED calculations in
the low–intermediate correlation regime for different values of the total spin Sz, we are able to
provide a detailed description of the lowest-energy optically active (bright) and inactive (dark)
excitons within a full many-body picture, which has not been presented so far in the GNR
literature. Our results for the allowed transitions and related optical oscillator strength versus
U/t point out a qualitatively different behaviour than that found for semiconducting SWCNTs
and allow us to group AGNRs into three different families according to the sequence of one-
and two-photon transitions in the electronic spectrum and the magnitude of the corresponding
optical matrix elements within the considered correlation regime.

2. Method

Figure 1 shows the geometrical structure of a GNR with armchair geometry. Periodic boundary
conditions are applied along the direction parallel to the edges, while the width of the armchair
ribbon is given by the number N of dimer lines containing N A-type and N B-type carbon atoms.
Following the traditional nomenclature for GNRs [12], we consider in this work AGNRs with
46 N 6 7, with 2N sites in their unit cell. One recalls that the 7-AGNR structure has also
been recently obtained from aromatic precursors and investigated by both scanning tunnelling
microscopy and Raman spectroscopy [9].

We study the N-AGNRs with brick-type lattices (i.e. with periodic ladders) which are
topologically equivalent to the structures of AGNRs [12, 20]. Moreover, considering periodic
boundary conditions along the direction parallel to the nanoribbon edges, we sample the k|| = 0
states in the GNR Brillouin zone. The brick-type lattice, made of coupled chains, can thus be
folded into a two-leg ladder with N rungs and a unique value t for all nearest-neighbour hopping
parameters in the Hamiltonian (see figure 3 in [12]). We consider the usual form for the Hubbard
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Figure 1. An armchair nanoribbon of width W with N dimer lines. A (B)-type
atoms are shown in red (blue), respectively. Equivalent atoms on the honeycomb
lattice are mapped by the a1 and a2 basis vectors.

Hamiltonian for π -electrons

H 2D
= −tπ

∑
〈i, j〉,σ

(c†
i,σc j,σ + h.c.)+ U

∑
i

ni,↑ni,↓, (1)

where i and j are site indices, 〈i, j〉 are all pairs of first nearest-neighbour sites, c†
i,σ and ci,σ

are the electron creation and annihilation operators, ni,σ = c†
i,σci,σ is the number of electrons

on site i with spin σ , tπ and U are the nearest-neighbour hopping parameter and the on-site
Coulomb repulsion parameter between two electrons with opposite spins, respectively. We
recall that within this Hamiltonian the on-site Coulomb interaction U must be considered an
effective parameter, whose value for half-filled systems with non-small values of the interactions
can be taken as equivalent to U eff

= U − V1, where V1 is the first nearest-neighbour Coulomb
interaction in the extended Hubbard models [29, 36]. Thus the (effective) U parameter also
implicitly takes into account longer-range Coulomb interactions in the limit of static screening,
as discussed by Wehling et al [35].

The one-photon optical spectral function of the AGNR is calculated according to the
Lehmann representation

I (E)=

∑
m

|〈ψm|v2D
||

|ψGS〉|
2δ(E + EGS − Em), (2)

where EGS is the ground-state (GS) energy of the system and Em the energy of any other
eigenstate |ψm〉 obtained from ED of the Hubbard Hamiltonian and v2D

||
is the velocity operator

for light polarization along the GNR edges, which can be expressed concisely as

v2D
||

= −
itπ
h̄

∑
〈i, j〉,σ

(c†
i,σc j,σ − c†

j,σci,σ )||. (3)
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The extended expressions of v2D
||

for each of the considered AGNRs are given in the
supporting information2. This operator obeys the selection rule for the azimuthal band quantum
number µ, namely 1µ= 0 for interband transitions in AGNRs with light polarization along
the nanoribbon edges [22, 24]. This implies that vertical transitions occur between van
Hove singularities belonging to the same AGNR band quantum number in the TB picture
(supplementary figure 2)2. Here we made the choice of considering only the case of polarization
along the ribbon edges, since in armchair GNRs strong depolarization effects are known to
quench the optical absorption for polarization perpendicular to the edges, contrary to zigzag
GNRs which do not seem to display this behaviour for perpendicular polarization [22]. We
recall that this formulation follows the same basic assumptions as those formerly outlined for
zigzag SWCNTs [36, 37].

The two-photon allowed eigenstates are recognized from the matrix elements of v2D
||

considering as the starting states the one-photon allowed eigenstates obtained from equation (2).
We consider a half-filled system with n electrons distributed over n = 2N sites. In the case of
states with spin quantum number Sz = 0, the size of the basis set and hence the dimension
of the matrix to be diagonalized is D = [n!/(n↑! n↓!)]2, where n↑ and n↓ are the numbers
of spin-up and spin-down electrons, respectively, with n↑ = n↓ = N . In order to perform
ED, we adopted an iterative diagonalization scheme based on the Lanczos algorithm, as
implemented in the ALPS libraries [38], and an additional matrix-free strategy with shared-
memory parallelization [39] to speed-up the diagonalization of the larger systems with 12 and 14
sites mimicking the 6- and 7-AGNRs, respectively. ED calculations were performed for several
values of the U/t correlation coupling strength and spin quantum number Sz = (n↑ − n↓)/2 in
order to discriminate the obtained eigenstates on the basis of their spin multiplicity in addition
to their one- and two-photon spectral activity.

3. Results and discussion

In figure 2 we report the one- and two-photon transitions for AGNRs with N = 4, 5, 6, 7 in the
low and intermediate correlation regimes for 0<U/t < 4. For the case U/t = 0 we verified
the TB results for the allowed interband electronic transition energies and for the metallicity
condition, N = 3p + 2, with p an integer, for 5-AGNR. For the other ribbons with N = 3p
(6-AGNR) and N = 3p + 1 (4- and 7-AGNR) we verified the semiconducting behaviour. When
electronic correlations are taken into account (U/t > 0) one can see that a different behaviour
is still present for the three types of ribbons, but for 5-AGNR the metallic behaviour is no
longer found because of the lifting of the K-point degeneracy. For semiconducting AGNRs
belonging to the N = 3p + 1 family, namely 4- and 7-AGNRs, in the very low correlation
regime U/t � 1, both one-photon active states ES11 and ES22 (following the usual notation
adopted for SWCNTs) occur at lower energies than the two-photon active states, whereas
for the semiconducting N = 3p (6-AGNR) the ES22 transition is found above the first two-
photon active transition energy. However, if we consider that GNRs are in the intermediate–low
correlation regime 16U/t 6 2, at least one two-photon allowed transition is always found
between ES11 and ES22 for all the three AGNR families. As shown in figure 2, both ES11
and ES22 transitions in AGNRs run almost parallel to each other in the considered correlation
range, and we do not find the crossing behaviour found for zigzag SWCNTs [36, 37]. Using

2 Online supplementary data available from stacks.iop.org/NJP/14/053047/mmedia.
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Figure 2. Transition energies versus U/t for the considered N-AGNRs with
N = 4, 5, 6, 7. Symbol legends: (∗) first one-photon bright state E11; (×) second
one-photon bright state E22; two-photon states are denoted by triangles.

tπ = 2.6–2.8 eV, typical of graphene [31, 35], we obtain one-photon transition energies ES11
and ES22 of the same order of those previously computed by GW Bethe–Salpeter methods
[26, 27] or by the PPP Hamiltonian [28, 29] for the corresponding families. As also discussed
by Ezawa [10], taking into account the bond deformation at the nanoribbon edge with a different
hopping parameter for the exposed sites and additional different on-site energy does not alter
the qualitative feature of the excitonic spectrum computed for the pristine AGNRs in the
intermediate correlation regime.

We find that the optical oscillator strengths versus U/t of ES11 (ES22) transition is always
increasing (decreasing), with the correlation strength for AGNR with N = 3p and N = 3p + 1,
whereas for N = 3p + 2 (5-AGNR) both transitions show a constantly decreasing oscillator
strength in the range U/t > 1 (figure 3). In the latter case, one can also see that in the
correlation range 16U/t 6 2, the optical oscillator strengths for both transitions are very close
in magnitude, whereas for N = 3p, 3p + 1 the intensity of the ES11 transition is on average
1.5–3 times as strong as the ES22 one. This finding agrees with the observation of Prezzi
et al [27] that the luminescence properties are strongly family dependent, although our trends
point out for a significantly different luminescence behaviour for N = 3p + 2 (5-AGNR) only.

In general, one finds that the magnitudes of the t2-normalized ES11 and ES22 optical
oscillator strengths of AGNRs are always lower than those calculated for zigzag semiconducting
SWNTs in the 16U/t 6 2 regime from an ED calculation on a cluster model with the same
number of sites (table 1).

We found a different behaviour for the two-photon oscillator strengths with respect to
zigzag SWNTs [37]. In nanotubes the oscillator strength shows a drop of about two orders of
magnitude when U/t crosses 1.8. This is not found for AGNRs, which show a smooth behaviour
in the entire explored correlation regime.
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Figure 3. Oscillator strengths versus U/t for the considered N-AGNRs with
N = 4, 5, 6, 7. Symbol legends: (∗) first one-photon bright state E11; (×) second
one-photon bright state E22.

Table 1. Comparison of ES11 and ES22 oscillator strengths in units of |v|2
||
/t2

for a (7, 0) SWNT and a 7-AGNR obtained from ED of a cluster with 14 sites in
the low-intermediate correlation regime.

U/t 7-AGNR ES11 (7, 0) ES11 7-AGNR ES22 (7, 0) ES22

1.0 5.6 12.4 4.1 10.5
1.3 6.0 12.7 3.7 11.4
1.5 6.3 12.7 3.4 11.7
1.7 6.5 12.7 3.1 11.9
2.0 6.9 12.5 2.8 12.2

In figure 4, we report the excitonic fine structure around the lowest bright exciton |B〉

related to the ES11 transition. The presence of dark states below and above the first bright state
influences the photoemission dynamics and yield.

Dark states showing two-photon absorption activity are calculated in the considered
correlation regime above the lowest bright exciton state for all AGNRs with the exception of
5-AGNR, which shows a two-photon active dark state immediately below the ES11 transition.
This different behaviour of the N = 3p + 2 AGNR confirms the observation of Prezzi et al [27]
that the presence of low-energy dark excitons in GNRs is dependent on the family. However,
our results reported in figure 4 highlight almost similar low-energy excited-state structures for
N = 3p and 3p + 1 AGNRs.

By changing the light polarization from parallel to perpendicular to the AGNR edge, we
also verified that it is possible to activate the singlet dark states in the entire explored correlation
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regime, in agreement with the results reported for the GW–Bethe–Salpeter correlation regime
by Louie et al [26] and Prezzi et al [27].

A feature in common with SWCNTs [37], for the N = 3p, 3p + 1 AGNRs, is the presence
of dark triplet and singlet states close to |B〉. These states can act as a population sink for the
nearby bright exciton, which can consequently give delayed photoemission.

The presence of deep-lying triplet excited states can also be observed in figure 4 and is in
accordance with the results obtained by Dutta et al [30], who reported that there are few dipole-
forbidden high-spin excited states above the singlet GS. These states can play a significant
role in quenching the radiative transition from the optically allowed excited state through a
bottleneck mechanism, thus leading to a very low quantum efficiency in the luminescence
spectroscopy of AGNRs.

4. Conclusions

In summary, we have investigated the excitonic structure of pristine AGNRs of width less than
10 nm by ED of the Hubbard model for several two-leg ladder models mimicking ribbons with
46 N 6 7 dimer lines and with light polarized along the ribbon edges. By this full many-
body approach applied to realistic systems, such as the 7-AGNRs fabricated by the most
recent bottom-up techniques [9], we are able to investigate the effect of electronic correlations
involved in direct interband optical transitions for several values of the electronic correlation
parameter U/t . Our results in the very low correlation regime U/t � 1 confirm that the
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classification into three families provided for AGNRs by the single-particle picture still holds
true even when electron–electron interactions are considered without approximations. Within
the low–intermediate 16U/t 6 2 correlation regime, which is considered to be appropriate
for the graphene-based system, the magnitude of the optical oscillator strength of one-photon
transitions for AGNRs is found to be lower than for single-walled carbon nanotubes, and two-
photon absorption optical matrix elements do not show abrupt changes with increasing U/t .
These results points out a qualitatively different behaviour in the photophysics of AGNRs when
compared with semiconducting single-walled carbon nanotubes, which can be a crucial factor
in the design of new carbon-based electronic devices.
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