C (OpenMP 3.1)
// solves 2-D Laplace equation using a relaxation scheme
#include <stdio.h>
#include <math.h>
#include <float.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#ifdef _OPENMP
#include <omp.h>
#endif
int main() {
double *T, *Tnew, *Tmp;
double tol, var = DBL_MAX, top = 100.0;
unsigned n, n2, maxIter, i, j, iter = 0;
int itemsread;
FILE *fout;
printf("Enter mesh size, max iterations and tolerance: ");
itemsread = scanf("%u ,%u ,%lf", &n, &maxIter, &tol);
if (itemsread!=3) {
fprintf(stderr, "Input error!\n");
exit(-1);
}
#ifdef _OPENMP
double startTime = omp_get_wtime();
#else
time_t startTime = clock();
#endif
n2 = n+2;
T = calloc(n2*n2, sizeof(*T));
Tnew = calloc(n2*n2, sizeof(*T));
if (T == NULL || Tnew == NULL) {
fprintf(stderr, "Not enough memory!\n");
exit(EXIT_FAILURE);
}
// set boundary conditions
for (i=1; i<=n; i++) {
T[(n+1)*n2+i] = Tnew[(n+1)*n2+i] = i * top / (n+1);
T[i*n2+n+1] = Tnew[i*n2+n+1] = i * top / (n+1);
}
#pragma omp parallel
{
while(var > tol && iter <= maxIter) {
#pragma omp barrier
#pragma omp single
{
++iter;
var = 0.0;
}
#pragma omp for private(j) reduction(max:var)
for (i=1; i<=n; ++i)
for (j=1; j<=n; ++j) {
Tnew[i*n2+j] = 0.25*( T[(i-1)*n2+j] + T[(i+1)*n2+j]
+ T[i*n2+(j-1)] + T[i*n2+(j+1)] );
var = fmax(var, fabs(Tnew[i*n2+j] - T[i*n2+j]));
}
#pragma omp single nowait
{
Tmp=T; T=Tnew; Tnew=Tmp;
if (iter%100 == 0)
printf("iter: %8u, variation = %12.4lE\n", iter, var);
}
}
}
#ifdef _OPENMP
double endTime = omp_get_wtime() - startTime;
#else
double endTime = (clock() - startTime) / (double) CLOCKS_PER_SEC;
#endif
printf("Elapsed time (s) = %.2lf\n", endTime);
printf("Mesh size: %u\n", n);
printf("Stopped at iteration: %u\n", iter);
printf("Maximum error: %lE\n", var);
// saving results to file
fout = fopen("results", "w");
if (fout == NULL) {
perror("results");
exit(-1);
}
for (i=1; i<=n; ++i)
for (j=1; j<=n; ++j)
fprintf(fout, "%8u %8u %18.9lE\n", i, j, T[i*n2+j]);
fclose(fout);
free(T);
free(Tnew);
return 0;
}
C (OpenMP 3.0 or older)
// solves 2-D Laplace equation using a relaxation scheme
#include <stdio.h>
#include <math.h>
#include <float.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#ifdef _OPENMP
#include <omp.h>
#endif
int main() {
double *T, *Tnew, *Tmp;
double tol, var = DBL_MAX, top = 100.0;
unsigned n, n2, maxIter, i, j, iter = 0;
int itemsread;
FILE *fout;
printf("Enter mesh size, max iterations and tolerance: ");
itemsread = scanf("%u ,%u ,%lf", &n, &maxIter, &tol);
if (itemsread!=3) {
fprintf(stderr, "Input error!\n");
exit(-1);
}
#ifdef _OPENMP
double startTime = omp_get_wtime();
#else
time_t startTime = clock();
#endif
n2 = n+2;
T = calloc(n2*n2, sizeof(*T));
Tnew = calloc(n2*n2, sizeof(*T));
if (T == NULL || Tnew == NULL) {
fprintf(stderr, "Not enough memory!\n");
exit(EXIT_FAILURE);
}
// set boundary conditions
for (i=1; i<=n; i++) {
T[(n+1)*n2+i] = Tnew[(n+1)*n2+i] = i * top / (n+1);
T[i*n2+n+1] = Tnew[i*n2+n+1] = i * top / (n+1);
}
#pragma omp parallel
{
while(var > tol && iter <= maxIter) {
#pragma omp barrier
#pragma omp single
{
++iter;
var = 0.0;
}
double pvar = 0.0;
#pragma omp for nowait private(j)
for (i=1; i<=n; ++i)
for (j=1; j<=n; ++j) {
Tnew[i*n2+j] = 0.25*( T[(i-1)*n2+j] + T[(i+1)*n2+j]
+ T[i*n2+(j-1)] + T[i*n2+(j+1)] );
pvar = fmax(pvar, fabs(Tnew[i*n2+j] - T[i*n2+j]));
}
#pragma omp critical
if (pvar > var) var = pvar;
#pragma omp barrier
#pragma omp single nowait
{
Tmp=T; T=Tnew; Tnew=Tmp;
if (iter%100 == 0)
printf("iter: %8u, variation = %12.4lE\n", iter, var);
}
}
}
#ifdef _OPENMP
double endTime = omp_get_wtime() - startTime;
#else
double endTime = (clock() - startTime) / (double) CLOCKS_PER_SEC;
#endif
printf("Elapsed time (s) = %.2lf\n", endTime);
printf("Mesh size: %u\n", n);
printf("Stopped at iteration: %u\n", iter);
printf("Maximum error: %lE\n", var);
// saving results to file
fout = fopen("results", "w");
if (fout == NULL) {
perror("results");
exit(-1);
}
for (i=1; i<=n; ++i)
for (j=1; j<=n; ++j)
fprintf(fout, "%8u %8u %18.9lE\n", i, j, T[i*n2+j]);
fclose(fout);
free(T);
free(Tnew);
return 0;
}
Fortran
program laplace
#ifdef _OPENMP
use omp_lib
#endif
implicit none
integer, parameter :: dp=kind(1.d0)
integer :: n, maxIter, i, j, iter = 0
real (dp), dimension(:,:), pointer :: T, Tnew, Tmp=>null()
real (dp) :: tol, var = 1.d0, top = 100.d0
integer :: ierr
#ifdef _OPENMP
real(kind(1.d0)) :: startTime, endTime
#else
real :: startTime, endTime
#endif
write(*,*) 'Enter mesh size, max iterations and tollerance:'
read(*,*,iostat=ierr) n, maxIter, tol
if(ierr /= 0) STOP 'Input error!'
#ifdef _OPENMP
startTime=omp_get_wtime()
#else
call cpu_time(startTime)
#endif
allocate (T(0:n+1,0:n+1), Tnew(0:n+1,0:n+1),stat=ierr)
if(ierr/=0) STOP 'T Tnew matrix allocation failed'
T(0:n,0:n) = 0.d0
T(n+1,1:n) = (/ (i, i=1,n) /) * (top / (n+1))
T(1:n,n+1) = (/ (i, i=1,n) /) * (top / (n+1))
Tnew = T
!$omp parallel
do while (var > tol .and. iter <= maxIter)
!$omp barrier
!$omp single
iter = iter + 1
var = 0.d0
!$omp end single
!$omp do reduction(max:var)
do j = 1, n
do i = 1, n
Tnew(i,j) = 0.25d0 * ( T(i-1,j) + T(i+1,j) + T(i,j-1) + T(i,j+1) )
var = max(var, abs( Tnew(i,j) - T(i,j) ))
end do
end do
!$omp end do
!$omp single
Tmp =>T; T =>Tnew; Tnew => Tmp;
if( mod(iter,100) == 0 ) write(*,"(a,i8,e12.4)") &
' iter, variation:', iter, var
!$omp end single nowait
end do
!$omp end parallel
#ifdef _OPENMP
endTime=omp_get_wtime()
#else
call cpu_time(endTime)
#endif
write(*,'(/A,F10.4)') ' Elapsed time (s) =', endTime - startTime
write(*,*) 'Mesh size =', n
write(*,*) 'Stopped at iteration =', iter
write(*,*) 'The maximum error =', var
open(10, file='results', action='write', iostat=ierr)
if(ierr /= 0) STOP 'Error in opening output file!'
write(10, "(i8, i8, e18.9)") (( i, j, T(i,j), i=1,n), j=1,n)
close(10)
deallocate (T, Tnew)
nullify(Tmp)
end program laplace